Complex Analysis

\(\text{笔记用书: Complex Analysis, Elias M.Stein Rami Shakarchi}\)

1. 复分析预备知识

1.1 复数与复平面

1.1.1 复数的基本性质

\(z=x+\mathrm{i}y\) 其中 \(x\) 为实部 \(y\) 为虚部,记为: \[x=\mathrm{Re}(z)\\ y=\mathrm{Im}(z)\]

  1. 交换律\(\forall z_1,z_2\in\mathbb{C},z_1+z_2=z_2+z_1\)
  2. 结合律\(\forall z_1,z_2,z_3\in \mathbb{C},(z_1+z_2)+z_3=z_1+(z_2+z_3)\)
  3. 分配律\(\forall z_1,z_2,z_3\in \mathbb{C},z_1(z_2+z_3)=z_1 z_2+z_1z_3\)

复数的模定义为: \[|z|=|z+\mathrm{i}y|=\sqrt{x^2+y^2}\]

复数模满足三角不等式: \[\forall z,w \in \mathbb{C},|z+w|\leqslant |z|+|w|\]

证明:设 \(z=a+b\mathrm{i},w=c+d\mathrm{i}\) \[ \begin{align} |z+w|&=|a+b\mathrm{i}+c+d\mathrm{i}|\nonumber\\ &=|a+c+(b+d)\mathrm{i}|\nonumber\\ &=\sqrt{(a+c)^2+(b+d)^2}\nonumber\\ \text{由 Minkovski inequality:}\nonumber\\ &\leqslant\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\nonumber\\ &=|z|+|w|\nonumber \end{align} \] 另外可由三角不等式导出其他的几个不等式:

  1. \(\forall z\in \mathbb{C},|\mathrm{Re}(z)|\leqslant|z|\)

证明:由三角不等式: \[ \begin{align} |\mathrm{Re}(z)|&=|z-\mathrm{Im}(z)\mathrm{i}|\nonumber\\ &\leqslant|z|+|-\mathrm{Im}(z)|\nonumber\\ &\leqslant|z|\nonumber \end{align} \]

  1. \(\forall z\in \mathbb{C},|\mathrm{Im}(z)|\leqslant|z|\)

证明:由三角不等式: \[ \begin{align} |\mathrm{Im}(z)|&=|z-\mathrm{Re}(z)|\nonumber\\ &\leqslant|z|+|\mathrm{Re}(z)|\nonumber\\ &\leqslant|z|\nonumber \end{align} \]

  1. \(\forall z,w\in \mathbb{C},||z|-|w||\leqslant|z-w|\)

证明: \[ \begin{align} |z|&=|z-w+w|\nonumber\\ &\leqslant |z-w|+|w|\nonumber\\ \Rightarrow |z|-|w|&\leqslant|z-w|\\ |w|&=|w-z+z|\nonumber\\ &\leqslant |w-z|+|z|\nonumber\\ \Rightarrow |w|-|z|&\leqslant|w-z|=|z-w|\\ \text{由(1)和(2)可知:}\nonumber\\ ||z|-|w||&\leqslant|z-w|\nonumber\\ \end{align} \]

定义复数 \(z=x+\mathrm{i}y\) 的共轭: \[\bar{z}=x-\mathrm{i}y\] 对于任意复数有:

  1. \(\displaystyle\mathrm{Re}(z)=\frac{z+\bar{z} }{2}\)

  2. \(\displaystyle\mathrm{Im}{z}=\frac{z-\bar{z} }{2i}\)

  3. \(z\bar{z}=|z|^2\)

证明: \[ \begin{align} \frac{z+\bar{z} }{2}&=\frac{a+b\mathrm{i}+a-b\mathrm{i} }{2}\nonumber\\&=a=\mathrm{Re}(z)\nonumber\\\nonumber\\\frac{z-\bar{z} }{2\mathrm{i} }&=\frac{a+b\mathrm{i}-a+b\mathrm{i} }{2\mathrm{i} }\nonumber\\&=b=\mathrm{Im}(z)\nonumber\\\nonumber\\z\bar{z}&=(a+b\mathrm{i})(a-b\mathrm{i})=a^2+b^2=|z|^2\nonumber\end{align}\] 利用上述结论证明: \[\\ \displaystyle\mathrm{cos}x=\frac{e^{\mathrm{i}x}+e^{-\mathrm{i}x} }{2},\\\mathrm{sin}x=\frac{e^{\mathrm{i}x}-e^{-\mathrm{i}x} }{2\mathrm{i} },x\in \mathbb{R}\]
由欧拉公式: \[ e^{\mathrm{i}x}=\mathrm{cos}x+\mathrm{isin}x\]\(\mathrm{Re}(e^{\mathrm{i}x})=\mathrm{cos}x,\mathrm{Im}(e^{\mathrm{i}x})=\mathrm{sin}x\\\) 由上述结论可知: \[ \begin{align} \mathrm{cos}x=\mathrm{Re}(e^{\mathrm{i}x})=\frac{e^{\mathrm{i}x}+e^{-\mathrm{i}x} }{2}\nonumber\\ \mathrm{sin}x=\mathrm{Im}(e^{\mathrm{i}x})=\frac{e^{\mathrm{i}x}-e^{-\mathrm{i}x} }{2\mathrm{i} }\nonumber \end{align}\]

由上述三角函数的指数形式,可以轻易地证明和角公式: \[\begin{align} \mathrm{cos}(x+y)&=\frac{e^{\mathrm{i}(x+y)}+e^{-\mathrm{i}(x+y)} }{2}\nonumber\\ &=\frac{e^{\mathrm{i}x}\cdot e^{\mathrm{i}y}+e^{-\mathrm{i}x}\cdot e^{-\mathrm{i}y} }{2}\nonumber\\ &=\frac{2e^{\mathrm{i}x}\cdot e^{\mathrm{i}y}+e^{\mathrm{i}x}\cdot e^{-\mathrm{i}y}-e^{\mathrm{i}x}\cdot e^{-\mathrm{i}y}+e^{-\mathrm{i}x}\cdot e^{\mathrm{i}y}-e^{-\mathrm{i}x}\cdot e^{\mathrm{i}y}+2e^{-\mathrm{i}x}\cdot e^{-\mathrm{i}y} }{4}\nonumber\\ &=\frac{(e^{\mathrm{i}x}+e^{-\mathrm{i}x})(e^{\mathrm{i}y}+e^{-\mathrm{i}y})+(e^{\mathrm{i}x}-e^{-\mathrm{i}x})(e^{\mathrm{i}y}-e^{-\mathrm{i}y})}{4}\nonumber\\ &=\frac{(e^{\mathrm{i}x}+e^{-\mathrm{i}x})}{2}\frac{(e^{\mathrm{i}y}+e^{-\mathrm{i}y})}{2}-\frac{(e^{\mathrm{i}x}-e^{-\mathrm{i}x})}{2\mathrm{i} }\frac{(e^{\mathrm{i}y}-e^{-\mathrm{i}y})}{2\mathrm{i} }\nonumber\\ &=\mathrm{cos}x\mathrm{cos}y-\mathrm{sin}x\mathrm{sin}y \nonumber \end{align}\] \[\begin{align} \mathrm{sin}(x+y)&=\frac{e^{\mathrm{i}(x+y)}-e^{-\mathrm{i}(x+y)} }{2\mathrm{i} }\nonumber\\ &=\frac{e^{\mathrm{i}x}\cdot e^{\mathrm{i}y}-e^{-\mathrm{i}x}\cdot e^{-\mathrm{i}y} }{2\mathrm{i} }\nonumber\\ &=\frac{2e^{\mathrm{i}x}\cdot e^{\mathrm{i}y}+e^{\mathrm{i}x}\cdot e^{-\mathrm{i}y}-e^{\mathrm{i}x}\cdot e^{-\mathrm{i}y}+e^{-\mathrm{i}x}\cdot e^{\mathrm{i}y}-e^{-\mathrm{i}x}\cdot e^{\mathrm{i}y}+2e^{-\mathrm{i}x}\cdot e^{-\mathrm{i}y} }{4\mathrm{i} }\nonumber\\ &=\frac{(e^{\mathrm{i}x}-e^{-\mathrm{i}x})(e^{\mathrm{i}y}+e^{-\mathrm{i}y})+(e^{\mathrm{i}x}+e^{-\mathrm{i}x})(e^{\mathrm{i}y}-e^{-\mathrm{i}y})}{4\mathrm{i} }\nonumber\\ &=\frac{(e^{\mathrm{i}x}-e^{-\mathrm{i}x})}{2\mathrm{i} }\frac{(e^{\mathrm{i}y}+e^{-\mathrm{i}y})}{2}-\frac{(e^{\mathrm{i}x}+e^{-\mathrm{i}x})}{2}\frac{(e^{\mathrm{i}y}-e^{-\mathrm{i}y})}{2\mathrm{i} }\nonumber\\ &=\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y \nonumber \end{align}\]

任意复数都可以表示为指数式: \[z=re^{i\theta}=r(\mathrm{cos}\theta+\mathrm{isin}\theta)\] \[z_1=re^{\mathrm{i}\theta}\\z_2=se^{\mathrm{i}\varphi}\\z_1z_2=rse^{\mathrm{i}(\theta+\varphi)}\]

1.1.2 收敛性

序列\(\{z_1,z_2,\cdots\},\)若存在\(w\in\mathbb{C}\)使得 \[\lim_{n\to +\infty}|z_n-w|=0\] 则称\(\{z_n\}\)收敛于\(w\).

\(z_n=a_n+b_n\mathrm{i},\{z_n\}\)的充分必要条件是\(\{a_n\},\{b_n\}\)收敛. >证明: >
"必要性": >\[\begin{align} |z_n-w|\to 0\nonumber\\ \Rightarrow|a_n+b_n\mathrm{i}-a-b\mathrm{i}|\to 0\nonumber\\ \Rightarrow |(a_n-a)+(b_n-b)\mathrm{i}|\to 0\nonumber\\ \Rightarrow\sqrt{(a_n-a)^2+(b_n-b)^2}\to 0\nonumber\\ \sqrt{(a_n-a)^2+(b_n-b)^2}\geqslant\sqrt{(a_n-a)^2}&=|a_n-a|\to 0 \nonumber\\ \sqrt{(a_n-a)^2+(b_n-b)^2}\geqslant\sqrt{(b_n-b)^2}&=|b_n-b|\to 0\nonumber\\\nonumber \end{align}\] >此即表明 \(\{a_n\},\{b_n\}\) 收敛
>"充分性": >\[ \begin{align} |a_n-a|\to 0&,|b_n-b|\to 0,即\nonumber\\ \sqrt{(a_n-a)^2}\to0&,\sqrt{(b_n-b)^2}\to0\nonumber\\ \sqrt{(a_n-a)^2}+\sqrt{(b_n-b)^2}\nonumber&\geqslant\sqrt{(a_n-a)^+(b_n-b)^2}\\ &=|(a_n-a)+(b_n-b)\mathrm{i}|\nonumber\nonumber\\ &=|an-b_n\mathrm{i}+a-b_\mathrm{i}|\nonumber\\ &=|z+w|\to 0\nonumber\\ \end{align} \]

复数集是Banach完备的

命题等价于证明:复数数列收敛的充要条件是复数数列是柯西列.
"必要性" :
对于\(\{a_n\},\{b_n\}\in\mathbb{R},\{a_n\},\{b_n\}\)收敛等价于其为柯西列,即: \[ m,n\to +\infty,|a_n-a_m|\to 0,|b_n-b_m|\to 0\]\(z_j=a_j+\mathrm{i}b_j\),故如果 \(z_j\) 收敛,则 \(a_n,b_n\) 收敛,所以 \(a_n,b_n\) 是柯西列 \[ \begin{align} |z_n-z_m|&=|a_n+b_n\mathrm{i}-a_m-b_m\mathrm{i}|\nonumber\\ &\leqslant |a_n-a_m|+|b_n-b_m|\to 0\nonumber \end{align}\]\(z_n\)是柯西列.
"充分性" :
略. #### 1.1.3 复平面上的集合 开圆盘: \[z_0\in\mathbb{C},D_r(z_0)=\{z\in\mathbb{C}:|z-z_0|<r\}\] 闭圆盘: \[z_0\in\mathbb{C},\overline{D_r}(z_0)=\{z\in\mathbb{C}:|z-z_0|\leqslant r\}\] 开源盘和闭圆盘的边界: \[\partial D_r(z_0)=\partial \overline{D_r}(z_0)=C_r(z_0)=\{z\in\mathbb{C}:|z-z_0|=r\}\] 单位圆盘: \[D=\{z\in\mathbb{C}:|z|<1\}\] \(\forall A \subseteq\mathbb{C},z_0\in C\)

\(z_0\)\(\varOmega\) 的内点: \[\exists r>0,D_r(z_0)\subseteq \varOmega\] \(\varOmega\) 是开集: \[\forall z\in \varOmega,\exists r_z>0,D_{r_z}(z)\subseteq \varOmega\] \(\varOmega\) 是闭集( \(\varOmega^c\) 是开集 ): \[\forall z\in \varOmega^c,\exists r_z>0,D_{r_z}(z)\subseteq \varOmega^c\] \(z_0\) 是极限点:
定义1: \[\exists \{z_n\}\in \varOmega,\lim_{n\to\infty}z_n=z_0\]
定义2: \[\forall \varepsilon>0,D_{\varepsilon}(z_0)\cap\varOmega\neq \varnothing\] \(\varOmega\) 的闭包\(\overline\varOmega\) ( 本身和极限点的并集 ) : \[\overline\varOmega= \varOmega \cup\{z\in\mathbb{C}:\forall \varepsilon>0,D_{\varepsilon}(z)\cap\varOmega\neq \varnothing\} \] \(\varOmega\) 的边界 \(\partial\varOmega\) : \[\partial \varOmega=\overline \varOmega-\varOmega\] \(\varOmega\) 有界 : \[\exists M>0,\forall z \in \varOmega,|z|<M\] \(\varOmega\) 的 直径 : \[\mathrm{diam}\varOmega=\sup_ {z,w\in \varOmega }|z-w|\]

紧致性:

\((X,\mathscr{T})\)是拓扑空间

\(\displaystyle X\) 的开覆盖 \(\mathscr{A}\) ( \(\mathscr{A}\) 的元素都是开集且 \(\mathscr{A}\) 覆盖X,即\(\displaystyle\bigcup_{U\in \mathscr{A} }U=X)\) , 则必存在 \(\mathscr{A}\) 的一个子集 \(\mathscr{A}_1\)\(X\) 的有限子覆盖 (\(\displaystyle\bigcup_{U\in \mathscr{A}_1}U=X\) , 其中 \(\mathscr{A}_1\) 是有限集)

定理 1.3 集合 \(\varOmega\) 是紧的充分必要条件是 \(\varOmega\)\(\varOmega\) 的任意开覆盖中必可以选出有限开覆盖.

命题 1.4如果\(\varOmega_1 \supset \varOmega_2 \supset \cdots\supset \varOmega_n \supset \cdots\)\(\mathbb{C}\)中的非空紧致序列,当 \(n\to \infty\)\[\mathrm{diam}(\varOmega_n)\to 0\] 那么一定存在唯一的 \(w\in\mathbb{C}\) 使得对于所有的 \(n\) ,\(w\in \varOmega\)

连通性:

1.2 定义在复平面上的函数

1.2.1 连续函数

连续函数的定义

定义: \[\forall \varepsilon>0,\exists \delta>0,|z-z_0|<\delta, |f(z)-f(z_0)|<\varepsilon\]

即:

\[\lim_{z\to z_0}f(z)=f(z_0)\]

等价的有 ( Henie定理 ) :

\[\forall \{z_n\}\in\varOmega,z_n\to z_0,\lim_{n\to\infty}f(z_n)=f(z)\] >证明: > >必要性:
>由连续性定义知: >\[\forall \varepsilon>0,\exists \delta>0,|z-z_0|<\delta, |f(z)-f(z_0)|<\varepsilon\] >由\(\{z_n\}\to z\)知: >\[\forall \delta>0 ,\exists N_\delta ,n\geqslant N_\delta,|z_n-z|<\delta\] >\[\Rightarrow \forall \varepsilon>0,\exists N_\delta,n\geqslant N_\delta,|z_n-z|<\delta,|f(z_n)-f(z)|<\varepsilon\] >即: >\[\lim_{n\to\infty}f(z_n)=f(z)\] >充分性: >反证法: >\[\forall \{z_n\}\to z,\forall \varepsilon>0,\exists N,n\geqslant N,|f(z_n)-f(z_0)|<\varepsilon \] >\[\exists \varepsilon_0 >0 ,\forall \delta>0, |z-z_0|<\delta,|f(z)-f(z_0)|\geqslant\varepsilon_0\] >令\(\displaystyle \delta =1\) >\[\exists z_1,|z_1-z_0|<\delta=1\] >令\(\displaystyle \delta =2\) >\[\exists z_2,|z_2-z_0|<\delta=\frac{1}{2}\] >\[\cdots\] >令\(\displaystyle \delta =n\) >\[\exists z_n,|z_n-z_0|<\delta=\frac{1}{n}\] >\[\cdots\] >这样便构造出了一个数列\(\{z_n\}\),\(\{z_n\}\to z_0\),但是 >\[对于\varepsilon_0,\forall N,n\geqslant N,|f(z_n)-f(z_0)|\geqslant\varepsilon\]

复变函数 \(f\) 关于变量 \(z=x+\mathrm{i}y\) 连续,当且仅当 \(\mathrm{Re}(f)\) 关于 \(x\) , \({Im}(f)\) 关于 \(y\) 是连续的

根据三角不等式,如果 \(f(z)\) 是连续的,那么\(|f(z)|\) 也是连续的

如果存在一个 \(z_0\) , \(\forall z,|f(z)|\leqslant|f(z_0)|\) , 则称 \(f\)\(z_0\) 取最大值.

如果存在一个 \(z_0\) , \(\forall z,|f(z)|\geqslant|f(z_0)|\) , 则称 \(f\)\(z_0\) 取最小值.

定理2.1: 紧集 \(\varOmega\) 上的连续函数 \(f\) 一定是有界的, 并且必能取到最大值和最小值。 >证明: >先证 \(f(z)\) 有界: >\[\forall w\in \varOmega, \exists \delta_w,\forall |z-w|<\delta,|f(z)-f(w)|<r=1\] >即在开圆盘 \(D_r(w)\) 中存在 >\[ M_w=\mathrm{max}(|1+f(w)|,|1-f(w)|),\\ |f(z)|<M_w, z\in D_r(w) \] >\(\{D_r(w)\}_{w\in \varOmega}\) 构成了 \(\varOmega\) 的一个开覆盖, >
根据紧集性质,存在一个 \(\{D_r(w)\}_{w\in \varOmega}\) 的有限子集 \(\{D_r(w_i)\}_{i=1}^n\) 覆盖 \(\varOmega\) >
故对任意 \(z\in \varOmega\) , \(|f(z)|\leqslant\max\limits_{1\leqslant i\leqslant n}M_{w_i}\) >
因此 \(f(z)\)\(\varOmega\) 上有界
>
再证 \(f(z)\)\(\varOmega\) 上有最大、最小值: >
由于 \(|f(z)|\) 有界 ,故 \(|f(z)|\) 有上/下确界,令: >\[ \sup\limits_{z\in \varOmega}|f(z)|=A\\ \inf\limits_{z\in \varOmega}|f(z)|=B\] >不妨先证存在最大值: >
由上确界性质: >\[ \forall \varepsilon >0,\exists |f(z_\varepsilon)|,||f(z_\varepsilon)|-A|<\varepsilon\] >令\(\displaystyle\varepsilon_n=\frac{1}{n}\) >\[ \forall n, \exists|f(z_n)|,||f(z_n)|-A|<\varepsilon_n=\frac{1}{n}\] >于是我们找出了这样一列\(\{f(z_n)\}\): >\[\lim_{n\to \infty}|f(z_n)|=A\] >由于 \(\{z_n\}\) 属于紧集 \(\varOmega\) , 故其必有一收敛子列 \(\{z_{n_k}\}\),设: >\[ \lim_{k\to\infty}z_{n_k}=z_{max}\] >由紧集性质 \(z_{max}\in \varOmega\) >
再由 \(f(z)\) 的连续性 >\[ f(z_{max})=\lim_{k\to\infty}f(z_{n_k})=\lim_{n\to\infty}f(z_n)=A\] >所以 \(f(z)\) 存在最大值 >
同理 \(f(z)\) 存在最小值

1.2.2 全纯函数

可微性:

如果 \(h\to 0\) \[\frac{f(z_0+h)-f(z_0)}{h}\] 极限存在,则称 \(f(z)\)\(z_0\) 处可微,记微商: \[ f'(x)=\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h} \]

全纯函数:

如果函数 \(f\) 在集合 \(\varOmega\) 中每个点都是可微的,则称 \(f\)\(\varOmega\) 上是全纯的 ( 由于全纯函数都可以展开为幂级数,所以全纯函数就是解析函数 )

整函数:

如果函数 \(f\) 在集合 \(\mathbb{C}\) 中每个点都是可微的,则称 \(f\) 是整函数

命题2.2: 若 \(f,g\) 是定义在 \(\varOmega\) 上的全纯函数,那么
1. \(f+g\) 是定义在 \(\varOmega\) 上的全纯函数,则 \((f+g)'=f'+g'\) 2. \(f\cdot g\) 是定义在 \(\varOmega\) 上的全纯函数,则 \((f\cdot g)'=f'g+fg'\) 3. 如果 \(f(z_0)\neq 0\) ,那么 \(f/g\)\(z_0\) 是全纯的,且 \(\displaystyle\left(\frac{f}{g}\right)'=\frac{f'g-g'f}{g^2}\) 此外如果\(f:\varOmega\to U,g:U\to \mathbb{C}\)都是全纯函数,可微的链式法则表示为 \((g\circ f)'(z)=g'(f(z))f'(z)\)

( i ) 证明: \[ \begin{align} (f+g)'(z)&=\lim_{h\to 0}\frac{(f+g)(z+h)-(f+g)(z)}{h}\nonumber\\ &=\lim_{h\to 0}\frac{f(z+h)-f(h)+g(z+h)-g(z)}{h}\nonumber\\ &=f'(z)+g'(z)\nonumber \end{align}\] ( ii ) 证明 \[ \begin{align} (f\cdot g)'(z)&=\lim_{h\to 0}\frac{(f\cdot g)(z+h)-(f\cdot g)(z)}{h}\nonumber\\ &=\lim_{h\to 0}\frac{f(z+h)g(z+h)-f(z)g(z)}{h}\nonumber\\ &=\lim_{h\to 0}\frac{f(z+h) g(z+h)-f(z+h)g(z)+f(z+h)g(z)-f(z) g(z)}{h}\nonumber\\ &=\lim_{h\to 0}\frac{f(z+h) (g(z+h)-g(z))+g(z)(f(z+h)-f(z))}{h}\nonumber\\ &=(fg'+f'g)(z\nonumber) \end{align}\] ( iii ) 证明 \[ \begin{align} \left(\frac{f}{g}\right)'(z)&=\lim_{h\to 0}\frac{\displaystyle\left(\frac{f}{g}\right)(z+h)-\left(\frac{f}{g}\right)(z)}{h}\nonumber\\ &=\lim_{h\to 0}\frac{\displaystyle\frac{f(z+h)}{g(z+h)}-\frac{f(z)}{g(z)} }{h}\nonumber\\ &=\lim_{h\to 0}\frac{\displaystyle\frac{f(z+h)g(z)-f(z)g(z+h)}{g(z+h)g(z)} }{h}\nonumber\\ &=\lim_{h\to 0}\frac{\displaystyle f(z+h)g(z)-f(z)g(z)+f(z)g(z)-f(z)g(z+h)}{h}\frac{1}{g(z+h)g(z)}\nonumber\\ &=\lim_{h\to 0}\frac{\displaystyle g(z)(f(z+h)-f(z))-f(z)(g(z+h)-g(z))}{h}\frac{1}{g(z+h)g(z)}\nonumber\\ &= \left( \frac{f'g-g'f}{g^2}\right)(z)\nonumber\\ \end{align}\] ( iv ) 证明 \[ f(z)\]

例1:\(f(z)=z\) 是全纯的,且\(f'(z)=1\) >\[\begin{align}f'(z)&=\lim_{h\to 0}\frac{z+h-z}{h}=\lim_{h\to 0}1=1\nonumber\\ \end{align}\] >事实上任何多项式函数: >\[\begin{align}p(z)&=a_0+a_1z+\cdots+a_nz^n 都是全纯的,并且\nonumber\\ p'(z)&=a_1+2a_2z+\cdots+na_nz^{n-1}\nonumber \end{align}\]

例2:函数 \(1/z\) 在复数集 \(\mathbb{C}\) 任何不包含原点 的开集上都是全纯的,且 \(f'(z)=-1/z^2\) >\[\begin{align}f'(z)&=\lim_{h\to 0}\frac{1/(z+h)-1/z}{h}=\lim_{h\to 0}\frac{-h/z(z+h)}{h}=-1/z^2\nonumber\\ \end{align}\]

例3:函数 \(f(z)=\bar{z}\) 不是全纯的 >\[\begin{align}\frac{f(z_0+h)-f(z_0)}{h}=\frac{\bar{h} }{h}\nonumber\\ \end{align}\] >\(h\to0时极限不存在,事实上h沿实轴和虚轴极限不同\)

复值函数映射

实可微: \(f(z)=f(x+\mathrm{i}y)=u(x,y)+\mathrm{i}v(x,y)\)\(z_0\) 处实可微则 \(u(x,y),v(x,y)\) 作为二元函数可微,即: \[ u(x_0+\Delta x,y_0+\Delta y)-u(x_0,y_0)=\frac{\partial u}{\partial x}(x_0,y_0)\Delta x+\frac{\partial u}{\partial y}(x_0,y_0)\Delta y+o(|\Delta z|)\\ v(x_0+\Delta x,y_0+\Delta y)-v(x_0,y_0)=\frac{\partial v}{\partial x}(x_0,y_0)\Delta x+\frac{\partial v}{\partial y}(x_0,y_0)\Delta y+o(|\Delta z|) \] 于是 \[ \begin{align} f(z_0+\Delta z)&-f(z_0)\nonumber\\\nonumber\\ &=u(x_0+\Delta x,y_0+\Delta y)-u(x_0,y_0)\nonumber\\\nonumber\\ &+\mathrm{i}\left(v(x+\Delta x_0,y_0+\Delta y)-v(x_0,y_0)\right)\nonumber\\\nonumber\\ &=\frac{\partial u}{\partial x}(x_0,y_0)\Delta x+\frac{\partial u}{\partial y}(x_0,y_0)\Delta y+o(|\Delta z|)\nonumber\\\nonumber\\ &+\mathrm{i}(\frac{\partial v}{\partial x}(x_0,y_0)\Delta x+\frac{\partial v}{\partial y}(x_0,y_0)\Delta y+o(|\Delta z|))\nonumber\\\nonumber\\ &=(\frac{\partial u}{\partial x}+\mathrm{i}\frac{\partial v}{\partial x})\Delta x+(\frac{\partial u}{\partial y}+\mathrm{i}\frac{\partial v}{\partial y})\Delta y+o(|\Delta z|)\nonumber\\\nonumber\\ &= \frac{\partial f}{\partial x}(x_0,y_0)\Delta x+\frac{\partial f}{\partial y}(x_0,y_0)\Delta y+o(|\Delta z|)\nonumber\\\nonumber\\ 将\Delta x=\frac{\Delta z+\overline{\Delta z} }{2}&,\Delta y=\frac{\Delta z-\overline{\Delta z} }{2\mathrm{i} }代入\nonumber\\\nonumber\\ f(z_0+\Delta z)&-f(z_0)\nonumber\\\nonumber\\ &= \frac{1}{2}\frac{\partial f}{\partial x}(x_0,y_0)(\Delta z+\overline{\Delta z})\nonumber\\\nonumber\\ &-\frac{\mathrm{i} }{2}\frac{\partial f}{\partial y}(x_0,y_0)(\Delta z-\overline{\Delta z})+o(|\Delta z|)\nonumber\\\nonumber\\ &=\frac{1}{2}\left(\frac{\partial}{\partial x}-\mathrm{i}\frac{\partial}{\partial y}\right)f(x_0,y_0)\Delta z\nonumber\\\nonumber\\ &+\frac{1}{2}\left(\frac{\partial}{\partial x}+\mathrm{i}\frac{\partial}{\partial y}\right)f(x_0,y_0)\overline{\Delta z}+o(|\Delta z|)\nonumber\\\nonumber\\ 令:\nonumber\\ \frac{\partial}{\partial z}&=\frac{1}{2}\left(\frac{\partial}{\partial x}-\mathrm{i}\frac{\partial}{\partial y}\right)\nonumber\\\nonumber\\ \frac{\partial}{\partial \overline{z} }&=\frac{1}{2}\left(\frac{\partial}{\partial x}+\mathrm{i}\frac{\partial}{\partial y}\right)\nonumber\\ 则:\nonumber\\\nonumber\\ f(z_0+\Delta z)&-f(z_0)=\frac{\partial f}{\partial z}(z_0)\Delta z+\frac{\partial f}{\partial \bar{z} }(z_0)\overline{\Delta z}+o(|\Delta z|)\nonumber\\ \end{align} \] \[ 如果f(z)可微,则\lim_{\Delta z\to 0}\frac{f(z+\Delta z)-f(z)}{\Delta z}=f'(z)\\ 则f(z_0+\Delta z)-f(z_0)=f'(z_0)\Delta z +o(|\Delta z|)\\\] 对比系数得: \[ \begin{align} \frac{\partial f}{\partial z}(z_0)&=f'(z_0)\nonumber\\ \frac{\partial f}{\partial \bar{z} }(z_0)&=0\quad(\text{Cauchy-Riemann})\nonumber \end{align} \]\[ \begin{align} \frac{\partial f}{\partial \bar{z} }&=\frac{\partial u}{\partial\bar{z} }+\mathrm{i}\frac{\partial v}{\partial\bar{z} }\nonumber\\ &=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\mathrm{i}\frac{\partial u}{\partial y}\right)+\frac{\mathrm{i} }{2}\left(\frac{\partial v}{\partial x}+\mathrm{i}\frac{\partial v}{\partial y}\right)\nonumber\\ &=\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+\frac{\mathrm{i} }{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)=0\nonumber\\ &\Rightarrow \begin{cases} \displaystyle \frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0\\ \displaystyle\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}=0 \end{cases}\nonumber\\ &\Rightarrow \begin{cases} \displaystyle \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\ \displaystyle\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \end{cases}\nonumber \end{align} \]

\[\colorbox{yellow}{\color{black}{\text{施工中}}}\]

从多元微分的角度来看:

定义: 对于 \(h=(h_1,h_2,h_3,\cdots, h_n)\) 如果成立 \[f(x_0+h)-f(\mathbb{x}_0)=\lambda h+o(\|h\|),\quad \|h\|\to 0\] 其中 \(\displaystyle\lambda h=\sum^n_{i=1}\lambda_i h_i\) , \(\lambda_i\)为不依赖于 \(h_i\) 常数 , 则称 \(f(x)\)\(x_0\) 处可微 , 并且称 \(\displaystyle\lambda h=\sum^n_{i=1}\lambda_i h_i\)\(f(x)\)\(x_0\) 处的微分 , 记作: \[\mathrm{d}f(x_0)(h)=\sum^n_{i=1}\lambda_i h_i\] 如果 \(f(x)\) 在开集 \(D\) 上每一点都可微 , 则称 \(f(x)\)\(D\) 上的可微函数.

\(h=(h_1,0,0,\cdots,0)\) , \(x_0=(x_1,x_2,\cdots,x_n)\) , 则有: \[ \begin{align} \mathrm{d}f(x_0)(h)+&o(\|h\|)\nonumber\\ &=\lambda_1 h_1+o(h_1)=f(x_1+h_1,x_2,\cdots ,x_n)-f(x_1,x_2,\cdots,x_n)\nonumber\\ \Rightarrow\qquad\lambda_1+o(1)&=\frac{f(x_1+h_1,x_2,\cdots ,x_n)-f(x_1,x_2,\cdots,x_n)}{h_1}\nonumber\\ \Rightarrow\lim_{h_1\to 0}\lambda_1+o(1)&=\lim_{h_1\to 0}\frac{f(x_1+h_1,x_2,\cdots ,x_n)-f(x_1,x_2,\cdots,x_n)}{h_1}\nonumber\\ \Rightarrow\qquad\qquad\quad\lambda_1&=\frac{\partial f(x_0)}{\partial x_1}\nonumber\\ \end{align} \] 所以对于所有的 \(i\) , \(\displaystyle\lambda_i=D_1f(x_0)=\frac{\partial f(x)}{\partial x_i}\)

于是: \[\mathrm{d}f(x_0)(h)=\sum^n_{i=1}\frac{\partial f(x_0)}{\partial x_i} h_i\]

令: \[Jf(x)=(D_1f(x),D_2f(x),\cdots,D_nf(x))\] \[ \begin{align} Jf(x)h&=(D_1f(x),D_2f(x),\cdots,D_nf(x))\left(\begin{matrix}h_1\\h_2\\\vdots\\ h_n\end{matrix}\right)\nonumber\\ &=\sum^n_{i=1}D_if(x)h_i=\mathrm{d}f(x)\nonumber \end{align} \] 如果 \(f(x)=f(u(x))=f(u_1(x),u_2(x),\cdots,u_n(x))\) , 则 : \[ \begin{align} Jf(x)&=(D_1f(u_1,\cdots,u_n),\cdots,D_nf(u_1,\dots,u_n))\nonumber\\\nonumber\\ &=\left(\frac{\partial f}{\partial u_1}\frac{\partial u_1}{\partial x_1}+\cdots+\frac{\partial f}{\partial u_n}\frac{\partial u_n}{\partial x_1},\cdots,\frac{\partial f}{\partial u_1}\frac{\partial u_1}{\partial x_n}+\cdots+\frac{\partial f}{\partial u_n}\frac{\partial u_n}{\partial x_n}\right)\nonumber\\\nonumber\\ &=\left(\begin{matrix} \partial f/\partial u_1 & \cdots & \partial f/\partial u_n \end{matrix}\right) \left(\begin{matrix} \partial u_1/\partial x_1 & \cdots &\partial u_1/\partial x_n \\ \vdots &\ddots & \vdots \\ \partial u_n/\partial x_1 & \cdots &\partial u_n/\partial x_n\\ \end{matrix}\right)\nonumber\\\nonumber\\ &=\nabla \cdot J_f(x_1, x_2, \cdots,x_n) f\nonumber \end{align} \] 对于函数\(F:\mathbb{R}^n\to \mathbb{R}^n\) , \(F(X)=(f_1,f_2,\cdots,f_n)\) 可微,有: \[ \begin{align} F(X_0+H)-F(X_0)&=(f_1(X_0+H)-f_1(X_0),\cdots,f_n(X_0+H)-f_n(X_0))\nonumber\\ &=(J_{f_1}(X_0)H+o(H),\cdots, J_{f_1}(X_0)H+o(H))\nonumber\\ &=(J_{f_1}(X_0)H,\cdots, J_{f_1}(X_0)H)+\varPsi(H)\nonumber\\ &\frac{|F(P_0+h)-F(P_0)-J(H)|}{|H|}\to 0\nonumber\\ \end{align} \] \[\colorbox{yellow}{\color{black}{\text{施工中}}}\]

1.2.3 幂级数

\[ e^z=\sum^\infty_{n=1}\frac{z^n}{n!} \] 事实上对于任意 \(z\in \mathbb{C}\) \[\left|\frac{z^n}{n!}\right|=\frac{|z^n|}{n!}=\frac{|z|^n}{n!}\] 因此此级数绝对收敛,又有: \[|e^z|=\left|\sum^\infty_{n=1}\frac{z^n}{n!}\right|\leqslant\sum^\infty_{n=1}\left|\frac{z^n}{n!}\right|=\sum^\infty_{n=1} \frac{|z|^n}{n!}=e^{|z|}\leqslant+\infty\] 所以 \(e^z\) 在任意 \(\mathbb{C}\) 中圆域内都是一致收敛的,对于 \(e^z\) 求导可以对其幂级数逐项求导,即: \[(e^z)'=\left(\sum^\infty_{n=1}\frac{z^n}{n!}\right)'=\sum^\infty_{n=1}\frac{z^{n-1}}{n-1!}=\sum^\infty_{n=1}\frac{z^n}{n!}=e^z\] 不同的是几何级数: \[\sum^\infty_{n=1}z^n\] 在圆域 \(|z|<1\) 内是一致收敛的,并且和函数是 \(\displaystyle \frac{1}{1-z}\) >证明: >

一般幂级数可以写作以下形式: